extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×He3)⋊1C22 = C62⋊D6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 36 | 12+ | (C2^2xHe3):1C2^2 | 432,323 |
(C22×He3)⋊2C22 = C62⋊2D6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 36 | 6 | (C2^2xHe3):2C2^2 | 432,324 |
(C22×He3)⋊3C22 = D4×C32⋊C6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 36 | 12+ | (C2^2xHe3):3C2^2 | 432,360 |
(C22×He3)⋊4C22 = D4×He3⋊C2 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 36 | 6 | (C2^2xHe3):4C2^2 | 432,390 |
(C22×He3)⋊5C22 = C22×C32⋊D6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 36 | | (C2^2xHe3):5C2^2 | 432,545 |
(C22×He3)⋊6C22 = C2×D4×He3 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3):6C2^2 | 432,404 |
(C22×He3)⋊7C22 = C2×He3⋊6D4 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3):7C2^2 | 432,377 |
(C22×He3)⋊8C22 = C2×He3⋊7D4 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3):8C2^2 | 432,399 |
(C22×He3)⋊9C22 = C23×C32⋊C6 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3):9C2^2 | 432,558 |
(C22×He3)⋊10C22 = C23×He3⋊C2 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3):10C2^2 | 432,561 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×He3).1C22 = He3⋊C42 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).1C2^2 | 432,94 |
(C22×He3).2C22 = C62.D6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).2C2^2 | 432,95 |
(C22×He3).3C22 = C62.3D6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).3C2^2 | 432,96 |
(C22×He3).4C22 = C62.4D6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).4C2^2 | 432,97 |
(C22×He3).5C22 = C62.5D6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).5C2^2 | 432,98 |
(C22×He3).6C22 = C2×He3⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).6C2^2 | 432,316 |
(C22×He3).7C22 = C2×C6.S32 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).7C2^2 | 432,317 |
(C22×He3).8C22 = C62.8D6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 72 | 12- | (C2^2xHe3).8C2^2 | 432,318 |
(C22×He3).9C22 = C62.9D6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 72 | 6 | (C2^2xHe3).9C2^2 | 432,319 |
(C22×He3).10C22 = C2×He3⋊2D4 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).10C2^2 | 432,320 |
(C22×He3).11C22 = C2×He3⋊(C2×C4) | φ: C22/C1 → C22 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).11C2^2 | 432,321 |
(C22×He3).12C22 = C2×He3⋊3D4 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).12C2^2 | 432,322 |
(C22×He3).13C22 = C62.13D6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 72 | 12- | (C2^2xHe3).13C2^2 | 432,361 |
(C22×He3).14C22 = C62.16D6 | φ: C22/C1 → C22 ⊆ Out C22×He3 | 72 | 6 | (C2^2xHe3).14C2^2 | 432,391 |
(C22×He3).15C22 = C4○D4×He3 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | 6 | (C2^2xHe3).15C2^2 | 432,410 |
(C22×He3).16C22 = C4×C32⋊C12 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).16C2^2 | 432,138 |
(C22×He3).17C22 = C62.19D6 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).17C2^2 | 432,139 |
(C22×He3).18C22 = C62.20D6 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).18C2^2 | 432,140 |
(C22×He3).19C22 = C62.21D6 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).19C2^2 | 432,141 |
(C22×He3).20C22 = C62⋊3C12 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).20C2^2 | 432,166 |
(C22×He3).21C22 = C4×He3⋊3C4 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).21C2^2 | 432,186 |
(C22×He3).22C22 = C62.29D6 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).22C2^2 | 432,187 |
(C22×He3).23C22 = C62.30D6 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).23C2^2 | 432,188 |
(C22×He3).24C22 = C62.31D6 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).24C2^2 | 432,189 |
(C22×He3).25C22 = C62⋊4Dic3 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).25C2^2 | 432,199 |
(C22×He3).26C22 = C2×He3⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).26C2^2 | 432,348 |
(C22×He3).27C22 = C2×C4×C32⋊C6 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).27C2^2 | 432,349 |
(C22×He3).28C22 = C2×He3⋊4D4 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).28C2^2 | 432,350 |
(C22×He3).29C22 = C62.36D6 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | 6 | (C2^2xHe3).29C2^2 | 432,351 |
(C22×He3).30C22 = C22×C32⋊C12 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).30C2^2 | 432,376 |
(C22×He3).31C22 = C2×He3⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).31C2^2 | 432,384 |
(C22×He3).32C22 = C2×C4×He3⋊C2 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).32C2^2 | 432,385 |
(C22×He3).33C22 = C2×He3⋊5D4 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | | (C2^2xHe3).33C2^2 | 432,386 |
(C22×He3).34C22 = C62.47D6 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 72 | 6 | (C2^2xHe3).34C2^2 | 432,387 |
(C22×He3).35C22 = C22×He3⋊3C4 | φ: C22/C2 → C2 ⊆ Out C22×He3 | 144 | | (C2^2xHe3).35C2^2 | 432,398 |
(C22×He3).36C22 = C42×He3 | φ: trivial image | 144 | | (C2^2xHe3).36C2^2 | 432,201 |
(C22×He3).37C22 = C22⋊C4×He3 | φ: trivial image | 72 | | (C2^2xHe3).37C2^2 | 432,204 |
(C22×He3).38C22 = C4⋊C4×He3 | φ: trivial image | 144 | | (C2^2xHe3).38C2^2 | 432,207 |
(C22×He3).39C22 = C22×C4×He3 | φ: trivial image | 144 | | (C2^2xHe3).39C2^2 | 432,401 |
(C22×He3).40C22 = C2×Q8×He3 | φ: trivial image | 144 | | (C2^2xHe3).40C2^2 | 432,407 |